Optical and Transport Properties of Ni-MoS2

نویسندگان

  • Tsung-Shine Ko
  • Cheng-Ching Huang
  • Andres Castellanos-Gomez
چکیده

In this paper, MoS2 and Ni-MoS2 crystal layers were fabricated by the chemical vapor transport method with iodine as the transport agent. Two direct band edge transitions of excitons at 1.9 and 2.1 eV were observed successfully for both MoS2 and Ni-MoS2 samples using temperature-dependent optical reflectance (R) measurement. Hall effect measurements were carried out to analyze the transport behavior of carriers in MoS2 and Ni-MoS2, which indicate that the Ni-MoS2 sample is n-type and has a higher resistance and lower mobility than the MoS2 sample has. A photoconductivity spectrum was performed which shows an additional Ni doping level existing at 1.2 eV and a higher photocurrent generating only for Ni-MoS2. The differences between MoS2 and Ni-MoS2 could be attributed to the effect of Ni atoms causing small lattice imperfections to form trap states around 1.2 eV. The temperature-dependent conductivity shows the presence of two shallow levels with activation energies (84 and 6.7 meV in MoS2; 57 and 6.5 meV in Ni-MoS2). Therefore, the Ni doping level leads to high resistance, low mobility and small activation energies. A series of experimental results could provide useful guidance for the fabrication of optoelectronic devices using MoS2 structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Agitation on the Properties of Antifriction Ni-P-MoS2 Composite Coatings

In this work the effects of various methods of agitation on the properties of electroless Ni-P-MoS2 composite coatings were investigated. Magnetic stirring as well as purging the solution with gas (Air, Oxygen, Nitrogen) were used. Plating rate, chemical composition, MoS2 distribution, and hardness of the deposit were measured. Topography of coating was studied with metallography and scanning e...

متن کامل

The Effects of Agitation on the Properties of Antifriction Ni-P-MoS2 Composite Coatings

In this work the effects of various methods of agitation on the properties of electroless Ni-P-MoS2 composite coatings were investigated. Magnetic stirring as well as purging the solution with gas (Air, Oxygen, Nitrogen) were used. Plating rate, chemical composition, MoS2 distribution, and hardness of the deposit were measured. Topography of coating was studied with metallography and scanning e...

متن کامل

EFFECTS OF CO-DEPOSITION OF CR2O3 AND MoS2 ON CORROSION PROPERTIES OF NANOCOMPOSITE ELECTROLESS NICKELCOATING

Abstract: Electroless Nickel (EN) composite coatings embedded with Cr2O3 and/or MoS2 particles were deposited to combine the characters of both Cr2O3 and MoS2 into one coating in this study. The effects of the co-deposited particles on corrosion behavior of the coating in 3.5% NaCl media were investigated. The results showed that both Ni-P and Ni-P composite coatings had significant improvement...

متن کامل

Tribological behavior of sputter-deposited MoSX/Ni coatings

AbstractSputtered MoS2 coatings have been mostly used as a solid lubricant. In this investigation, MoSx/Ni composite coatings with Ni contents varying from 0 to 22 % were deposited onto steel substrate using a DC magnetron sputter process. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the...

متن کامل

Enhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets

α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016